Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 307(4): 1147-1174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37794742

RESUMEN

The anatomy of the braincase and associated soft tissues of the lagerpetid Dromomeron gregorii (Archosauria: Avemetatarsalia) from the Late Triassic of the United States is here described. This corresponds to the first detailed description of cranial materials of Lagerpetidae, an enigmatic group of Late Triassic (c. 236-200 Million years ago) animals that are the closest known relatives of pterosaurs, the flying reptiles. The braincase of D. gregorii is characterized by the presence of an anteriorly elongated laterosphenoid and a postparietal, features observed in stem-archosaurs but that were still unknown in early members of the avian lineage of archosaurs. Using micro-computed tomography (CT-scan data), we present digital reconstructions of the brain and endosseous labyrinth of D. gregorii. The brain of D. gregorii exhibits a floccular lobe of the cerebellum that projects within the space of the semicircular canals. The semicircular canals are relatively large when compared to other archosauromorphs, with the anterior canal exhibiting a circular shape. These features of the sensory structures of D. gregorii are more similar to those of pterosaurs than to those of other early avemetatarsalians. In sum, the braincase anatomy of D. gregorii shows a combination of plesiomorphic and apomorphic features in the phylogenetic context of Archosauria and suggests that the still poorly understood early evolution of the braincase in avemetatarsalians is complex, with a scenario of independent acquisitions and losses of character states.


Asunto(s)
Dinosaurios , Fósiles , Animales , Filogenia , Neuroanatomía , Microtomografía por Rayos X , Cráneo/anatomía & histología , Canales Semicirculares , Evolución Biológica , Dinosaurios/anatomía & histología
2.
Cancers (Basel) ; 15(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067313

RESUMEN

Bone metastases are one of the most dangerous consequences of breast cancer. Early diagnosis and treatment would slow down the development of the disease and increase the survival rates of patients. Bone micro-vasculature is believed to play a major role in the development of bone metastases. It could be used for both diagnosis and as a therapeutic target. Synchrotron radiation micro-computed tomography (SR-µCT) with a contrast agent of blood vessels has been used to analyze the bone vasculature both in healthy and in metastatic bone. However, few studies have investigated the local features of blood vessels around metastases so far. For this purpose, the metastases first need to be automatically segmented. This is a challenging task, however, since the metastases do not contribute a specific contrast to the three-dimensional (3D) SR-µCT images. Here, we propose a new method for the simultaneous segmentation of bone, blood vessels, and metastases from contrast enhanced 3D SR-µCT images based on the nnU-Net architecture. In this study, we showed that only minimal training data was required to achieve a high quality of segmentation. The proposed method allowed for the automatic segmentation of metastases and provided an improved segmentation of bone and blood vessels compared to previous methods while being much more efficient to apply once trained. Further, the automatic segmentation allowed for the measurement of vascular metastases interdistance and to restrict measurements to volumes of interest around the metastases. Finally, we quantitatively analyzed blood vessel parameters locally around metastases. This allowed for the demonstration that a combined anti-angiogenic treatment significantly decreased the volume and thickness of blood vessels close to metastases. The proposed method showed the capacity of the method to reveal new aspects of the blood vessel structure interaction with metastases. This could be further used to both define new targets for precocious detection of metastases as well as to study the kinetics of metastasis development in bone and the action of drugs on this process.

3.
Ecol Evol ; 13(6): e10201, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37384241

RESUMEN

Organisms display a considerable variety of body sizes and shapes, and macroevolutionary investigations help to understand the evolutionary dynamics behind such variations. Turtles (Testudinata) show great body size disparity, especially when their rich fossil record is accounted for. We explored body size evolution in turtles, testing which factors might influence the observed patterns and evaluating the existence of long-term directional trends. We constructed the most comprehensive body size dataset for the group to date, tested for correlation with paleotemperature, estimated ancestral body sizes, and performed macroevolutionary model-fitting analyses. We found no evidence for directional body size evolution, even when using very flexible models, thereby rejecting the occurrence of Cope's rule. We also found no significant effect of paleotemperature on overall through-time body size patterns. In contrast, we found a significant influence of habitat preference on turtle body size. Freshwater turtles display a rather homogeneous body size distribution through time. In contrast, terrestrial and marine turtles show more pronounced variation, with terrestrial forms being restricted to larger body sizes, up to the origin of testudinids in the Cenozoic, and marine turtles undergoing a reduction in body size disparity after the extinctions of many groups in the mid-Cenozoic. Our results, therefore, suggest that long-term, generalized patterns are probably explained by factors specific to certain groups and related at least partly to habitat use.

4.
Opt Lett ; 48(5): 1136-1139, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857232

RESUMEN

We propose the deep Gauss-Newton (DGN) algorithm. The DGN allows one to take into account the knowledge of the forward model in a deep neural network by unrolling a Gauss-Newton optimization method. No regularization or step size needs to be chosen; they are learned through convolutional neural networks. The proposed algorithm does not require an initial reconstruction and is able to retrieve simultaneously the phase and absorption from a single-distance diffraction pattern. The DGN method was applied to both simulated and experimental data and permitted large improvements of the reconstruction error and of the resolution compared with a state-of-the-art iterative method and another neural-network-based reconstruction algorithm.

5.
J Morphol ; 284(1): e21536, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394285

RESUMEN

Osteoderms are mineralized structures embedded in the dermis, known for nonavian archosaurs, squamates, xenarthrans, and amphibians. Herein, we compared the osteoderm histology of Brazilian Notosuchia of Cretaceous age using three neosuchians for comparative purposes. Microanatomical analyses showed that most of them present a diploe structure similar to those of other pseudosuchians, lizards, and turtles. This structure contains two cortices (the external cortex composed of an outer and an inner layers, and the basal cortex) and a core in-between them. Notosuchian osteoderms show high bone compactness (>0.85) with varying degrees of cancellous bone in the core. The neosuchian Guarinisuchus shows the lowest bone compactness with a well-developed cancellous layer. From an ontogenetic perspective, most tissues are formed through periosteal ossification, although the mineralized tissues observed in baurusuchid LPRP/USP 0634 suggest a late metaplastic development. Histology suggests that the ossification center of notosuchian osteoderm is located at the keel. Interestingly, we identified Sharpey's fibers running perpendicularly to the outer layer of the external cortex in Armadillosuchus arrudai, Itasuchus jesuinoi, and Baurusuchidae (LPRP/USP 0642). This feature indicates a tight attachment within the dermis, and it is evidence for the presence of an overlying thick leathery layer of skin over these osteoderms. These data allow a better understanding of the osteohistological structure of crocodylomorph dermal bones, and highlight their structural diversity. We suggest that the vascular canals present in some sampled osteoderms connecting the inner layer of the external cortex and the core with the external surface may increase osteoderm surface and the capacity of heat transfer in terrestrial notosuchians.


Asunto(s)
Lagartos , Tortugas , Animales , Piel , Huesos , Osteogénesis
6.
PeerJ ; 10: e14333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405026

RESUMEN

The description of new titanosaur specimens unearthed from deposits of the Serra da Galga Formation (Bauru Group, Late Cretaceous) at the BR-262 site, near Peirópolis (Uberaba, Minas Gerais State, Brazil), sheds light on the taxonomy of two taxa previously known from the same area and geological unit: Baurutitan britoi and Trigonosaurus pricei. A comparative revision indicates that T. pricei represents a junior synonym of Ba. britoi, and that the BR-262 specimens belong to that latter species. The information provided by the new specimens also revealed that the paratype of T. pricei (MCT 1719-R), a caudal vertebral series, actually represents a new taxon, named here as Caieiria allocaudata gen. et sp. nov.


Asunto(s)
Dinosaurios , Animales , Brasil , Filogenia , Columna Vertebral , Geología
7.
Biology (Basel) ; 11(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36358337

RESUMEN

Molecular information has been gathered from fossilized dental enamel, the best-preserved tissue of vertebrates. However, the association of morphological features with the possible mineral and organic information of this tissue is still poorly understood in the context of the emerging area of paleoproteomics. This study aims to compare the morphological features and chemical composition of dental enamel of extinct and extant terrestrial vertebrates of Crocodylia: Purussaurus sp. (extinct) and Melanosuchus niger (extant), and Rodentia: Neoepiblema sp. (extinct) and Hydrochoerus hydrochaeris (extant). To obtain structural and chemical data, superficial and internal enamel were analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (SEM-EDS). Organic, mineral, and water content were obtained using polarizing microscopy and microradiography on ground sections of four teeth, resulting in a higher organic volume than previously expected (up to 49%). It is observed that both modern and fossil tooth enamel exhibit the same major constituents: 36.7% Ca, 17.2% P, and 41% O, characteristic of hydroxyapatite. Additionally, 27 other elements were measured from superficial enamel by inductively coupled mass spectrometry (ICP-MS). Zinc was the most abundant microelement detected, followed by Pb, Fe, Mg, and Al. Morphological features observed include enamel rods in the rodent teeth, while incremental lines and semiprismatic enamel were observed in the alligator species. The fossil enamel was in an excellent state for microscopic analyses. Results show that all major dental enamel's physical, chemical, and morphological features are present both in extant and extinct fossil tooth enamel (>8.5 Ma) in both taxa.

8.
Opt Lett ; 47(20): 5389-5392, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240370

RESUMEN

We propose a nonlinear primal-dual algorithm for the retrieval of phase shift and absorption from a single x ray in-line phase contrast, or Fresnel diffraction, image. The algorithm permits us to regularize phase and absorption separately. We demonstrate that taking into account the nonlinearity in the reconstruction improves reconstruction compared with linear methods. We also demonstrate that choosing different regularizers for absorption and phase can improve the reconstructions. The use of the total variation and its generalization in a primal-dual approach allows us to exploit the sparsity of the investigated sample. On both simulated and real datasets, the proposed nonlinear primal-dual hybrid gradient (NL-PDHG) method yields reconstructions with considerably fewer artifacts and improved the normalized mean squared error compared with its linearized version.

9.
Evolution ; 76(11): 2566-2586, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36117268

RESUMEN

Turtles have a highly modified body plan, including a rigid shell that constrains postcranial anatomy. Skull morphology and neck mobility may therefore be key to ecological specialization in turtles. However, the ecological signal of turtle skull morphologies has not been rigorously evaluated, leaving uncertainties about the roles of ecological adaptation and convergence. We evaluate turtle cranial ecomorphology using three-dimensional geometric morphometrics and phylogenetic comparative methods. Skull shape correlates with allometry, neck retraction capability, and different aquatic feeding ecologies. We find that ecological variables influence skull shape only, whereas a key functional variable (the capacity for neck retraction) influences both shape and size. Ecology and functional predictions from three-dimensional shape are validated by high success rates for extant species, outperforming previous two-dimensional approaches. We use this to infer ecological and functional traits of extinct species. Neck retraction evolved among crownward stem-turtles by the Late Jurassic, signaling functional decoupling of the skull and neck from the shell, possibly linked to a major episode of ecomorphological diversification. We also find strong evidence for convergent ecological adaptations among marine groups. This includes parallel loss of neck retraction, evidence for active hunting, possible grazing, and suction feeding in extinct marine groups. Our large-scale assessment of dietary and functional adaptation throughout turtle evolution reveals the timing and origin of their distinct ecomorphologies, and highlights the potential for ecology and function to have distinct effects on skull form.


Tartarugas tem um plano corpóreo bastante modificado, que inclui um casco rígido que restringe sua anatomia pós-craniana. Portanto, a morfologia craniana e a mobilidade do pescoço devem ser centrais nas especializações ecológicas de tartarugas. No entanto, o sinal ecológico das diferentes morfologias de crânio de tartarugas não foi ainda rigorosamente avaliado, deixando incertezas sobre os papéis de adaptações ecológicas e convergência. Avaliamos a ecomorfologia craniana de tartarugas utilizando morfometria geométrica tridimensional e métodos filogenéticos comparativos. A forma craniana correlaciona com alometria, capacidade de retração do pescoço e diferentes ecologias alimentares aquáticas. Encontramos que variáveis ecológicas influenciam apenas a forma do crânio, enquanto uma importante variável funcional (a capacidade de retração do pescoço) influencia tanto a forma como o tamanho do crânio. Predições ecológicas e funcionais para espécies viventes a partir de formas tridimensionais são validadas com altas taxas de sucesso, superando abordagens bidimensionais. Utilizamos isso para inferir traços ecológicos e funcionais de espécies extintas. A retração do pescoço evoluiu em linhagens extintas mais próximas à origem do grupo-coronal durante o Jurássico Final, indicando uma dissociação funcional entre crânio e pescoço do casco, algo possivelmente ligado a um importante episódio de diversificação ecomorfológica. Também encontramos forte evidência para adaptações ecológicas convergentes em grupos marinhos. Isso inclui a perda paralela da retração do pescoço, evidência de caça ativa, alimentação por sucção, além de possível preferência por plantas aquáticas em grupos marinhos extintos. Nosso estudo de larga-escala sobre adaptações funcionais e relacionadas à dieta ao longo da evolução de tartarugas revela o tempo e origem de suas distintas ecomorfologias, e destaca ainda o potencial de ecologia e função terem efeitos distintos sobre a forma craniana.


Asunto(s)
Tortugas , Animales , Tortugas/anatomía & histología , Filogenia , Cráneo/anatomía & histología , Cuello/anatomía & histología , Cabeza , Evolución Biológica
10.
Nature ; 609(7926): 313-319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045297

RESUMEN

The vertebrate lineages that would shape Mesozoic and Cenozoic terrestrial ecosystems originated across Triassic Pangaea1-11. By the Late Triassic (Carnian stage, ~235 million years ago), cosmopolitan 'disaster faunas' (refs. 12-14) had given way to highly endemic assemblages12,13 on the supercontinent. Testing the tempo and mode of the establishment of this endemism is challenging-there were few geographic barriers to dispersal across Pangaea during the Late Triassic. Instead, palaeolatitudinal climate belts, and not continental boundaries, are proposed to have controlled distribution15-18. During this time of high endemism, dinosaurs began to disperse and thus offer an opportunity to test the timing and drivers of this biogeographic pattern. Increased sampling can test this prediction: if dinosaurs initially dispersed under palaeolatitudinal-driven endemism, then an assemblage similar to those of South America4,19-21 and India19,22-including the earliest dinosaurs-should be present in Carnian deposits in south-central Africa. Here we report a new Carnian assemblage from Zimbabwe that includes Africa's oldest definitive dinosaurs, including a nearly complete skeleton of the sauropodomorph Mbiresaurus raathi gen. et sp. nov. This assemblage resembles other dinosaur-bearing Carnian assemblages, suggesting that a similar vertebrate fauna ranged high-latitude austral Pangaea. The distribution of the first dinosaurs is correlated with palaeolatitude-linked climatic barriers, and dinosaurian dispersal to the rest of the supercontinent was delayed until these barriers relaxed, suggesting that climatic controls influenced the initial composition of the terrestrial faunas that persist to this day.


Asunto(s)
Dinosaurios , Ecosistema , Animales , Clima , Fósiles , Historia Antigua , Filogenia , Filogeografía , Densidad de Población , Dinámica Poblacional , Esqueleto , Zimbabwe
11.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35884504

RESUMEN

Bone metastases are frequent complications of breast cancer, facilitating the development of anarchic vascularization and induce bone destruction. Therefore, anti-angiogenic drugs (AAD) have been tested as a therapeutic strategy for the treatment of breast cancer bone metastasis. However, the kinetics of skeletal vascularization in response to tumor invasion under AAD is still partially understood. Therefore, the aim of this study was to explore the effect of AAD on experimental bone metastasis by analyzing the three-dimensional (3D) bone vasculature during metastatic formation and progression. Seventy-three eight-week-old female mice were treated with AAD (bevacizumab, vatalanib, or a combination of both drugs) or the vehicle (placebo) one day after injection with breast cancer cells. Mice were sacrificed eight or 22 days after tumor cell inoculation (time points T1 and T2, respectively). Synchrotron radiation microcomputed tomography (SR-µCT) was used to image bone and blood vessels with a contrast agent. Hence, 3D-bone and vascular networks were simultaneously visualized and quantitatively analyzed. At T1, the trabecular bone volume fraction was significantly increased (p < 0.05) in the combined AAD-treatment group, compared to the placebo- and single AAD-treatment groups. At T2, only the bone vasculature was reduced in the combined AAD-treatment group (p < 0.05), as judged by measurement of the blood vessel thickness. Our data suggest that, at the early stage, combined AAD treatment dampens tumor-induced bone resorption with no detectable effects on bone vessel organization while, at a later stage, it affects the structure of bone microvascularization.

12.
J R Soc Interface ; 19(191): 20220131, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730171

RESUMEN

During the evolution of land plants many body plans have been developed. Differences in the cross-sectional geometry and tissue pattern of plant axes influence their flexural rigidity, torsional rigidity and the ratio of both of these rigidities, the so-called twist-to-bend ratio. For comparison, we have designed artificial cross-sections with various cross-sectional geometries and patterns of vascular bundles, collenchyma or sclerenchyma strands, but fixed percentages for these tissues. Our mathematical model allows the calculation of the twist-to-bend ratio by taking both cross-sectional geometry and tissue pattern into account. Each artificial cross-section was placed into a rigidity chart to provide information about its twist-to-bend ratio. In these charts, artificial cross-sections with the same geometry did not form clusters, whereas those with similar tissue patterns formed clusters characterized by vascular bundles, collenchyma or sclerenchyma arranged as one central strand, as a peripheral closed ring or as distributed individual strands. Generally, flexural rigidity increased the more the bundles or fibre strands were placed at the periphery. Torsional rigidity decreased the more the bundles or strands were separated and the less that they were arranged along a peripheral ring. The calculated twist-to-bend ratios ranged between 0.85 (ellipse with central vascular bundles) and 196 (triangle with individual peripheral sclerenchyma strands).


Asunto(s)
Modelos Teóricos
13.
J Synchrotron Radiat ; 29(Pt 3): 807-815, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511013

RESUMEN

X-ray fluorescence microscopy performed at nanofocusing synchrotron beamlines produces quantitative elemental distribution maps at unprecedented resolution (down to a few tens of nanometres), at the expense of relatively long measuring times and high absorbed doses. In this work, a method was implemented in which fast low-dose in-line holography was used to produce quantitative electron density maps at the mesoscale prior to nanoscale X-ray fluorescence acquisition. These maps ensure more efficient fluorescence scans and the reduction of the total absorbed dose, often relevant for radiation-sensitive (e.g. biological) samples. This multimodal microscopy approach was demonstrated on human sural nerve tissue. The two imaging modes provide complementary information at a comparable resolution, ultimately limited by the focal spot size. The experimental setup presented allows the user to swap between them in a flexible and reproducible fashion, as well as to easily adapt the scanning parameters during an experiment to fine-tune resolution and field of view.


Asunto(s)
Holografía , Microscopía , Nervio Sural , Sincrotrones , Fluorescencia , Humanos , Microscopía/métodos , Microscopía Fluorescente , Radiografía , Nervio Sural/diagnóstico por imagen , Rayos X
14.
J Synchrotron Radiat ; 29(Pt 3): 843-852, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511016

RESUMEN

X-ray nano-tomography with phase contrast (nanoCT) using synchrotron radiation is a powerful tool to non-destructively investigate 3D material properties at the nanoscale. In large bone lesions, such as severe bone fractures, bone cancer or other diseases, bone grafts substituting the lost bone might be necessary. Such grafts can be of biological origin or be composed of a synthetic bone substitute. The long-term functioning of artificial bone substitutes depends on many factors. Synchrotron nanoCT imaging has great potential to contribute to further the understanding of integration of implants into bone tissue by imaging the spatial interaction between bone tissue and implant, and by accessing the interface between implant material and bone tissue. With this aim, a methodology for evaluating the image quality is presented for in-line phase contrast nanoCT images of bone scaffold samples. A PMMA-embedded tricalcium phosphate scaffold was used with both a closed and an open porosity structure and bone ingrowths as a representative system of three known materials. Parameters such as spatial resolution and signal-to-noise ratio were extracted and used to explore and quantitatively compare the effects of implementation choices in the imaging setup, such as camera technology and imaging energy, on the resulting image quality. Increasing the X-ray energy from 17.5 keV to 29.6 keV leads to a notable improvement in image quality regardless of the camera technology used, with the two tested camera setups performing at a comparable level when the recorded intensity was kept constant.


Asunto(s)
Materiales Biocompatibles , Tomografía Computarizada por Rayos X , Huesos/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía de Contraste de Fase , Sincrotrones
15.
Appl Opt ; 61(10): 2497-2505, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35471314

RESUMEN

X-ray in-line phase contrast imaging relies on the measurement of Fresnel diffraction intensity patterns due to the phase shift and the attenuation induced by the object. The recovery of phase and attenuation from one or several diffraction patterns is a nonlinear ill-posed inverse problem. In this work, we propose supervised learning approaches using mixed scale dense (MS-D) convolutional neural networks to simultaneously retrieve the phase and the attenuation from x-ray phase contrast images. This network architecture uses dilated convolutions to capture features at different image scales and densely connects all feature maps. The long range information in images becomes quickly available, and greater receptive field size can be obtained without losing resolution. This network architecture seems to account for the effect of the Fresnel operator very efficiently. We train the networks using simulated data of objects consisting of either homogeneous components, characterized by a fixed ratio of the induced refractive phase shifts and attenuation, or heterogeneous components, consisting of various materials. We also train the networks in the image domain by applying a simple initial reconstruction using the adjoint of the Fréchet derivative. We compare the results obtained with the MS-D network to reconstructions using U-Net, another popular network architecture, as well as to reconstructions using the contrast transfer function method, a direct phase and attenuation retrieval method based on linearization of the direct problem. The networks are evaluated using simulated noisy data as well as images acquired at NanoMAX (MAX IV, Lund, Sweden). In all cases, large improvements of the reconstruction errors are obtained on simulated data compared to the linearized method. Moreover, on experimental data, the networks improve the reconstruction quantitatively, improving the low-frequency behavior and the resolution.

16.
J Synchrotron Radiat ; 29(Pt 1): 224-229, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985439

RESUMEN

Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffraction-limited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.


Asunto(s)
Holografía , Imagenología Tridimensional , Radiografía , Sincrotrones , Rayos X
17.
Anat Rec (Hoboken) ; 305(2): 393-423, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34021739

RESUMEN

Dinosaurs possess a form of tooth attachment wherein an unmineralized periodontal ligament suspends each tooth within a socket, similar to the condition in mammals and crocodylians. However, little information is known about tooth attachment and implantation in their close relatives, the silesaurids. We conducted a histological survey of several silesaurid taxa to determine the nature of tooth attachment in this phylogenetically and paleoecologically important group of archosaurs. Our histological data demonstrate that these early dinosauriforms do not exhibit the crocodilian/dinosaur condition of a permanent gomphosis, nor the rapid ankylosis that is plesiomorphic for amniotes. Instead, all sampled silesaurids exhibit delayed ankylosis, a condition in which teeth pass through a prolonged stage where the teeth are suspended in sockets by a periodontal ligament, followed by eventual mineralization and fusion of the tooth to the jaws. This suggests that tooth attachment in crocodylians and dinosaurs represent the further retention of an early ontogenetic stage compared to silesaurids, a paedomorphic trend that is mirrored in the evolution of synapsid tooth attachment. It also suggests that the dinosaur and crocodylian gomphosis was convergently acquired via heterochrony or, less likely, that the silesaurid condition represents a reversal to a plesiomorphic state. Moreover, if Silesauridae is nested within Ornithischia, a permanent gomphosis could be convergent between the two main dinosaur lineages, Ornithischia and Saurischia. These results demonstrate that dental characters in early archosaur phylogenies must be chosen and defined carefully, taking into account the relative duration of the different phases of dental ontogeny.


Asunto(s)
Caimanes y Cocodrilos , Anquilosis , Dinosaurios , Diente , Animales , Ligamento Periodontal
18.
Anat Rec (Hoboken) ; 305(5): 1119-1146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358415

RESUMEN

Lewisuchus admixtus is an early dinosauriform described by Alfred Romer in 1972 on the basis of a single, incomplete skeleton, collected in lower Upper Triassic rocks of the renowned Chañares Formation, at the Los Chañares type-locality, La Rioja Province, north-western Argentina. Recent field explorations to the type-locality resulted in the discovery of two partial articulated skeletons, which provide significant novel information. The cranial bones, presacral series, femur, tibia, and proximal tarsals of the new specimens match the preserved overlapping anatomy of the holotype and previously referred specimens of L. admixtus, including the presence of unique combination of character states among dinosauriforms (anterior presacral column with additional ossification on the top of neural spines, dorsal neural spines fan-shaped, anterior surface of the astragalus with a dorsally curved groove, and an inflated area on the anterior portion of the medial surface of this bone). This new information improves our understanding of the anatomy and taxonomy of early dinosauriforms and reinforces the role of Argentinean beds on the study of the origin of dinosaurs.


Asunto(s)
Dinosaurios , Fósiles , Animales , Argentina , Evolución Biológica , Dinosaurios/anatomía & histología , Filogenia , Cráneo/anatomía & histología
19.
J Exp Bot ; 73(4): 1236-1252, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34893822

RESUMEN

Plants are exposed to various environmental stresses. Leaves immediately respond to mechano-stimulation, such as wind and touch, by bending and twisting or acclimate over a longer time period by thigmomorphogenetic changes of mechanical and geometrical properties. We selected the peltate leaves of Pilea peperomioides for a comparative analysis of mechano-induced effects on morphology, anatomy, and biomechanics of petiole and transition zone. The plants were cultivated for 6 weeks in a phytochamber divided into four treatment groups: control (no stimulus), touch stimulus (brushing every 30 s), wind stimulus (constant air flow of 4.6 m s-1), and a combination of touch and wind stimuli. Comparing the four treatment groups, neither the petiole nor the transition zone showed significant thigmomorphogenetic acclimations. However, comparing the petiole and the transition zone, the elastic modulus (E), the torsional modulus (G), the E/G ratio, and the axial rigidity (EA) differed significantly, whereas no significant difference was found for the torsional rigidity (GK). The twist-to-bend ratios (EI/GK) of all petioles ranged between 4.33 and 5.99, and of all transition zones between 0.67 and 0.78. Based on the twist-to-bend ratios, we hypothesize that bending loads are accommodated by the petiole, while torsional loads are shared between the transition zone and petiole.


Asunto(s)
Hojas de la Planta , Viento , Aclimatación , Fenómenos Biomecánicos , Hojas de la Planta/fisiología , Plantas
20.
Front Plant Sci ; 12: 765605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858462

RESUMEN

From a mechanical viewpoint, petioles of foliage leaves are subject to contradictory mechanical requirements. High flexural rigidity guarantees support of the lamina and low torsional rigidity ensures streamlining of the leaves in wind. This mechanical trade-off between flexural and torsional rigidity is described by the twist-to-bend ratio. The safety factor describes the maximum load capacity. We selected four herbaceous species with different body plans (monocotyledonous, dicotyledonous) and spatial configurations of petiole and lamina (2-dimensional, 3-dimensional) and carried out morphological-anatomical studies, two-point bending tests and torsional tests on the petioles to analyze the influence of geometry, size and shape on their twist-to-bend ratio and safety factor. The monocotyledons studied had significantly higher twist-to-bend ratios (23.7 and 39.2) than the dicotyledons (11.5 and 13.3). High twist-to-bend ratios can be geometry-based, which is true for the U-profile of Hosta x tardiana with a ratio of axial second moment of area to torsion constant of over 1.0. High twist-to-bend ratios can also be material-based, as found for the petioles of Caladium bicolor with a ratio of bending elastic modulus and torsional modulus of 64. The safety factors range between 1.7 and 2.9, meaning that each petiole can support about double to triple the leaf's weight.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...